Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nanoscale Adv ; 6(8): 2088-2095, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633045

RESUMO

Composite coatings containing reduced graphene oxide (rGO) and 3-(aminopropyl)triethoxysilane functionalised rGO (APTES-rGO) were prepared by sol-gel technology and deposited on Al 2024 T-3. Covalent functionalisation of GO by APTES occurred by formation of amide bonds, accompanied by GO reduction. The thin sheets were retained. The hydrophilicity of the coating increased when APTES-rGO was added. The opposite was observed when GO was added. A key finding is that the rGO flakes agglomerate and lie in a random orientation in the coating, whereas the APTES-rGO flakes are more evenly distributed in the matrix and appear to lie along the plane of the substrate.

2.
Ecotoxicol Environ Saf ; 273: 116134, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387143

RESUMO

The leaching of additives from plastics and elastomers (rubbers) has raised concerns due to their potential negative impacts on the environment and the development of antibiotic resistance. In this study, we investigated the effects of chemicals extracted from two types of rubber on microbiomes derived from a benthic sea urchin and two pelagic fish species. Additionally, we examined whether bacterial communities preconditioned with rubber-associated chemicals displayed adaptations to antibiotics. At the highest tested concentrations of chemicals, we observed reduced maximum growth rates and yields, prolonged lag phases, and increased alpha diversity. While the effects on alpha and beta diversity were not always conclusive, several bacterial genera were significantly influenced by chemicals from the two rubber sources. Subsequent exposure of sea urchin microbiomes preconditioned with rubber chemicals to the antibiotic ciprofloxacin resulted in decreased maximum growth rates. This indicates a more sensitive microbiome to ciprofloxacin when preconditioned with rubber chemicals. Although no significant interaction effects between rubber chemicals and ciprofloxacin exposure were observed in bacterial alpha and beta diversity, we observed log-fold changes in two bacterial genera in response to ciprofloxacin exposure. These findings highlight the structural and functional alterations in microbiomes originating from various marine species when exposed to rubber-associated chemicals and underscore the potential risks posed to marine life.


Assuntos
Microbiota , Borracha , Animais , Antibacterianos/toxicidade , Plásticos , Ciprofloxacina/toxicidade
3.
Microplast nanoplast ; 3(1): 24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920865

RESUMO

Plastics pollution research attracts scientists from diverse disciplines. Many Early Career Researchers (ECRs) are drawn to this field to investigate and subsequently mitigate the negative impacts of plastics. Solving the multi-faceted plastic problem will always require breakthroughs across all levels of science disciplinarity, which supports interdisciplinary discoveries and underpins transdisciplinary solutions. In this context, ECRs have the opportunity to work across scientific discipline boundaries and connect with different stakeholders, including industry, policymakers and the public. To fully realize their potential, ECRs need to develop strong communication and project management skills to be able to effectively interface with academic peers and non-academic stakeholders. At the end of their formal education, many ECRs will choose to leave academia and pursue a career in private industry, government, research institutes or non-governmental organizations (NGOs). Here we give perspectives on how ECRs can develop the skills to tackle the challenges and opportunities of this transdisciplinary research field and how these skills can be transferred to different working sectors. We also explore how advisors can support an ECRs' growth through inclusive leadership and coaching. We further consider the roles each party may play in developing ECRs into mature scientists by helping them build a strong foundation, while also critically assessing problems in an interdisciplinary and transdisciplinary context. We hope these concepts can be useful in fostering the development of the next generation of plastics pollution researchers so they can address this global challenge more effectively.

4.
Mar Pollut Bull ; 196: 115633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864860

RESUMO

The production and consumption of plastic products had been steadily increasing over the years, leading to more plastic waste entering the environment. Plastic pollution is ubiquitous and comes in many types and forms. To enhance or modify their properties, chemical additives are added to plastic items during manufacturing. The presence and leakage of these additives, from managed and mismanaged plastic waste, into the environment are of growing concern. In this study, we gauged, via an online questionnaire, expert knowledge on the use, characteristics, monitoring and risks of plastic additives to the marine environment. We analysed the survey results against actual data to identify and prioritise risks and gaps. Participants also highlighted key factors for future consideration, including gaining a deeper understanding of the use and types of plastic additives, how they leach throughout the entire lifecycle, their toxicity, and the safety of alternative options. More extensive chemical regulation and an evaluation of the essentiality of their use should also be considered.


Assuntos
Poluição Ambiental , Poluentes Químicos da Água , Humanos , Poluição Ambiental/análise , Plásticos/análise , Comércio , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Sci Total Environ ; 903: 166560, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633373

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the potential impacts of MPs/NPs on the quality and safety of seafood.

6.
Environ Sci Technol ; 57(34): 12583-12593, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590158

RESUMO

Petroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually. To overcome this challenge, comprehensive two-dimensional gas chromatography (GC × GC) in combination with advanced data-handling algorithms was applied to track and calculate degradation half-times (DT50s) of individual constituents in two dispersed middle distillate gas oils in seawater. By tracking >1000 peaks (representing ∼53-54% of the total mass across the entire chromatographic area), known biodegradation patterns of oil constituents were confirmed and extended to include many hundreds not currently investigated by traditional one-dimensional GC methods. Approximately 95% of the total tracked peak mass biodegraded after 64 days. By tracking the microbial community evolution, a correlation between the presence of functional microbial communities and the observed progression of DT50s between chemical classes was demonstrated. This approach could be used to screen the persistence of GC × GC-amenable constituents of petroleum substance UVCBs.


Assuntos
Petróleo , Cromatografia Gasosa , Algoritmos , Biodegradação Ambiental , Alimentos
7.
J Hazard Mater ; 458: 131810, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336109

RESUMO

The current study investigated the chemical complexity of fifty plastic (36) and elastomer/rubber (14) methanol extracts from consumer products, focusing on the association with toxicity in two screening assays (bacteria luminescence and marine microalgae). The chemical composition varied considerably between the products and polymers. The most complex sample (car tire rubber) contained 2456 chemical features and the least complex (disposable water bottle) only 39 features, with a median of 386 features across all products. Individual extract toxicity also varied significantly across the products and polymers, with the two toxicity assays showing comparable results in terms of defining low and high toxicity extracts, and correlation between medium toxicity extracts. Chemical complexity and abundance both correlated with toxicity in both assays. However, there were strong differences in toxicity between plastic and elastomer extracts. Overall, 86-93 % of the 14 elastomer extracts and only 33-36 % of other polymer extracts (n = 36) were more toxic than the median. A range of compounds were tentatively identified across the sample set, with several concerning compounds being identified, mostly in the elastomers. While the current focus on plastic chemicals is towards thermoplastics, we show that elastomers may be of more concern from an environmental and human health perspective.


Assuntos
Plásticos , Borracha , Humanos , Compostos Orgânicos , Polímeros , Elastômeros , Bactérias
8.
Anal Bioanal Chem ; 415(15): 3007-3031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106123

RESUMO

A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.

9.
Sci Total Environ ; 869: 161824, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720396

RESUMO

The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare the capture/removal efficiency to that of conventional coagulants and mucus from other organisms. The efficacy of A.a mucus to capture polystyrene and acrylic NPs (∼100 nm) from spiked wastewater treatment plant (WWTP) effluent was evaluated. The mucus effect on capture kinetics and destabilization of NPs of different polymer compositions, sizes and concentrations was quantified by means of fluorescent NPs, dynamic light scattering and zeta potential measurements and visualized by scanning electron microscopy. A dosing of A.a. mucus equivalent to protein concentrations of ∼2-4 mg L-1 led to a rapid change in zeta potential from a baseline of -30 mV to values close to 0 mV, indicating a marked change from a stable to a non-stable dispersion leading to a rapid (<10 min) and significant removal of NPs (60 %-90 %) from a stable suspension. The A.a. mucus outperformed all other mucus types (0-37 %) and coagulants (0 %-32 % for ferric chloride; 23-40 % for poly aluminum chlorohydrate), highlighting the potential for jellyfish mucus to be used as bio-flocculant. The results indicate a mucus-particle interaction consisting of adsorption-bridging and "mesh" filtration. Further insight is provided by carbohydrate composition and protein disruption analysis. Total protein disruption resulted in a complete loss of the A.a. mucus capacity to capture NPs, while the breaking of disulfide bonds and protein unfolding resulted in improved capture capacity. The study demonstrates that natural jellyfish mucin can capture and remove NPs in water and wastewater treatment systems more efficiently than conventional coagulants, highlighting the potential for development of a new type of bio-flocculant.


Assuntos
Nanopartículas , Cifozoários , Purificação da Água , Animais , Humanos , Mucinas/metabolismo , Microplásticos , Adsorção , Purificação da Água/métodos , Nanopartículas/química
10.
Sci Total Environ ; 859(Pt 2): 160038, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395847

RESUMO

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.


Assuntos
Meio Ambiente , Poluição Ambiental , Humanos , Animais , Estágios do Ciclo de Vida
11.
Mar Pollut Bull ; 179: 113713, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35525061

RESUMO

Fuzzy Cognitive Mapping (FCM) is a participatory modelling tool used to explore complex systems by facilitating interdisciplinary cooperation and integrating a variety of knowledge systems. Here FCM was used to explore marine microfiber pollution. Through individual interviews with representatives from the research, industry, water and environmental sectors, five stakeholder FCMs were developed and used to produce an aggregated community FCM in a stakeholder workshop. Stakeholder FCMs and the revised community FCM were used to compute how the modelled system reacted to changes under two scenarios developed during the stakeholder workshop; (i) Green Shift and (ii) increased textile consumption and production. Significant differences were observed in scenario results from the stakeholder-based models and the community-based model. For societal challenges characterized by unknowns around the problem and potential solutions, inclusion of a variety of knowledge systems through FCM and deliberation processes contribute to a more holistic picture of the system and its uncertainties.


Assuntos
Poluição Ambiental , Têxteis , Cognição , Lógica Fuzzy , Indústrias
12.
Mar Pollut Bull ; 174: 113305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090290

RESUMO

Spatial uptake patterns of microplastics (MP) by marine species are largely unexplored under field conditions. A novel "biodeposit trap" that measure uptake and egestion of MP by suspension-feeders through the analysis of their biodeposits, was designed and used to estimate the spatial variation of these processes by mussels in field conditions. Traps containing wild or farmed mussels or control empty shells were deployed at three sites characterised by different MP concentrations and water flow conditions. A different MP dimensional composition was observed between MP pools present in biodeposit and control traps, with the latter shifted towards higher dimensional range (0.05-5 mm). Conversely, mussels accumulated small MP (0.02-0.05 mm) into their biodeposits without any significant difference between wild and farmed specimens. MP uptake rates were on average 4-5 times higher at the site where MP contamination was expected to be highest and where water flow conditions were considered moderate.


Assuntos
Mytilus edulis , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 298: 118848, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032604

RESUMO

Microplastics (MPs; particles <5 mm) are widely distributed in various habitats from the land to the oceans. They have even reached the remotest of places, including the deep seas and Polar Regions. Although research on MPs pollution in the marine environment has received widespread attention in recent years, the distribution, sources and ecological risks of MPs in coastal areas remain unclear. This study assessed the abundance, characteristics, sources and ecological risk of MPs in surface waters and sediment of the mainland coast and four island groups comprising the coral reef environment of the Gulf of Mannar (GoM), southeast India. Mean MPs abundance across all 95 sampling sites ranged from 28.4 to 126.6 items L-1 in water and from 31.4 to 137.6 items kg-1 in sediment. MP fibers <2 mm dominated the water, while fragments >3 mm were predominant in sediments. Polyethylene (PE) and polypropylene (PP) were the most common polymers in both matrices. The major proportion of MPs in the GoM derived from land-based sources, with distance to the mainland, coastal population density and improper handling of solid waste being the main factors influencing the abundance of MPs. Polymer Hazard Index (PHI), Pollution Load Index (PLI) and Potential Ecological Risk Index (PERI) were used to assess current levels of MPs. While the GoM has high PHI values (>1000) resulting from MPs with high hazard scores (e.g. polyamide, polystyrene, polyvinyl chloride), the PLI values (1.46 and 1.51) indicate low MPs pollution levels in GoM waters and sediments, and the PERI values (31.7 and 24.4) indicate that this represents a minor ecological risk. The results from the current study enhance our understanding of the characteristics, sources, and associated environmental risks of MPs to marine ecosystems. This data may provide a baseline for future monitoring and the formulation of environmental policy.


Assuntos
Microplásticos , Poluentes Químicos da Água , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Plásticos , Poluentes Químicos da Água/análise
14.
Environ Pollut ; 294: 118640, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875265

RESUMO

As reservoirs for pollutants transported via the Yangtze and Yellow Rivers, the Bohai Sea (BS) and Yellow Sea (YS) play an important role in transporting microplastics (MPs) to the Pacific Ocean. The fate, sources and mass budget of MPs in the BS and the YS were investigated by Pearson correlation, principal component analysis-multilinear regression analysis (PCA-MRLA) and a mass balance model to sedimentary MPs data. Average MP abundances were 137 and 119 items kg-1 in the Bohai and Yellow Seas, respectively. MPs <1000 µm exhibited similar distribution patterns to total organic carbon and fine-grained sediments, while MPs >1000 µm were confined in the BS and exhibited a strong positive correlation with chlorophyll-a and polyethylene terephthalate, suggesting that larger MPs might deposit faster due to biofouling or when comprised of high density polymers. PCA-MLRA analysis indicated land-based inputs (packing materials, textile material and daily commodities) were dominant in the BS, while maritime activities (fishing and mariculture) were the main source of MPs in the YS. The mass balance model revealed that the total MP input and output to the BS and the YS was 3396.92 t yr-1 and 3814.81 t yr-1, respectively. The major input pathway of MPs to the BS and the YS were river discharge and air deposition, respectively. Notably, 94% of MPs in the BS and the YS were deposited to sediments. This study revealed that BS and YS sediments play an important role in preventing MPs from being further transported to the Pacific Ocean, thus more attention should be paid to local ecological risk assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Oceanos e Mares , Plásticos , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 424(Pt B): 127421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653869

RESUMO

Irregular-shaped and partially degraded secondary microplastics (SMP) account for the majority of MPs in marine environments, yet little is known about their effects on marine organisms. In this study, we investigated the embryotoxicity of polyvinyl chloride SMP and primary microplastics (PMP) to the marine medaka Oryzias melastigma. This study aimed to determine the physical impacts of MPs and, for the first time, elucidate the underlying mechanisms of physical toxicity. SMP shortened hatching time and induced higher teratogenic effects on larvae relative to PMP, indicating a higher toxicity from SMP. Physical damage from SMP to the chorion surface appears to be the main toxicity mechanism, caused by their irregular shape and reduced aggregation relative to PMP. In contrast, real-time changes in oxygen demonstrated that hypoxia caused by greater PMP adsorption to the chorion surface contributes to the toxicological responses of this material relative to SMP. Modulation of genes involved in hypoxia-response, cardiac development and hatching confirmed the toxicity mechanisms of PMP and SMP. The chemical contribution to observed toxicity was negligible, confirming impacts derived from physical toxicity. Our findings highlight the negative effects of environmentally relevant SMP on the marine ecosystems.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Pollut ; 291: 118230, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597732

RESUMO

Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Metais Terras Raras/análise , Água do Mar , Poluentes Químicos da Água/análise , Ítrio
17.
Environ Int ; 157: 106794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358913

RESUMO

Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.


Assuntos
Microplásticos , Plásticos , Poluição Ambiental/prevenção & controle , Noruega
18.
Nat Commun ; 12(1): 4426, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285235

RESUMO

Plastic garbage patches at the ocean surface are symptomatic of a wider pollution affecting the whole marine environment. Sinking of plastic debris increasingly appears to be an important process in the global fate of plastic in the ocean. However, there is insufficient knowledge about the processes affecting plastic distributions and degradation and how this influences the release of additives under varying environmental conditions, especially in deep-sea environments. Here we show that in abiotic conditions increasing hydrostatic pressure inhibits the leaching of the heaviest organic additives such as tris(2-ethylhexyl) phosphate and diisononyl phthalate from polyethylene and polyvinylchloride materials, whereas deep-sea and surface marine prokaryotes promote the release of all targeted additives (phthalates, bisphenols, organophosphate esters). This study provides empirical evidences for more efficient additive release at the ocean surface than in deep seawater, where the major plastic burden is supposed to transit through before reaching the sediment compartment.

19.
Materials (Basel) ; 14(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070730

RESUMO

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.

20.
Environ Pollut ; 283: 117081, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848903

RESUMO

Ocean contamination by synthetic polymers can represent a risk for the fitness of marine species due to the leaching of chemical additives. This study evaluated the sub-lethal effects of plastic and rubber leachates on the mussel Mytilus galloprovincialis through a battery of biomarkers encompassing lysosomal endpoints, oxidative stress/detoxification parameters, and specific responses to metals/neurotoxicants. Mussels were exposed for 7 days to leachates from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC), containing organic additives and metals in the ng-µg/L range. The leachate exposure affected general stress parameters, including the neutral lipid content (all leachates), the lysosomal membrane stability (PS, PP, PVC and CTR leachates) and lysosomal volume (PP, PVC and TR leachates). An increased content of the lipid peroxidation products malondialdehyde and lipofuscin was observed in mussels exposed to PET, PS and PP leachates, and PP, PVC and CTR leachates, respectively. PET and PP leachates increased the activity of the phase-II metabolism enzyme glutathione S-transferase, while a decreased acetylcholinesterase activity was induced by PVC leachates. Data were integrated in the mussel expert system (MES), which categorizes the organisms' health status based on biomarker responses. The MES assigned healthy status to mussels exposed to PET leachates, low stress to PS leachates, and moderate stress to PP, CTR and PVC leachates. This study shows that additives leached from selected plastic/rubber polymers cause sub-lethal effects in mussels and that the magnitude of these effects may be higher for CTR, PVC and PP due to a higher content and release of metals and organic compounds.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Biomarcadores , Plásticos/toxicidade , Borracha/toxicidade , Alimentos Marinhos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...